Part Number Hot Search : 
HC374 AP9563GK CMZ5370B SFBSS78 DL400 ON0518 BAT43 MG720
Product Description
Full Text Search
 

To Download LTC5588-1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  LTC5588-1  55881f typical a pplica t ion fea t ures descrip t ion 200mhz to 6000mhz quadrature modulator with ultrahigh oip3 the ltc ? 5588-1 is a direct conversion i/q modulator designed for high performance wireless applications. it allows direct modulation of an rf signal using differential baseband i and q signals. it supports lte, gsm, edge, td-scdma, cdma, cdma2000, w-cdma, wimax and other communication standards. it can also be config- ured as an image reject upconverting mixer, by applying 90 phase-shifted signals to the i and q inputs. the i/q baseband inputs drive double-balanced mixers. an on- chip balun converts the differential mixer signals to a 50 single-ended rf output. four balanced i and q baseband input ports are dc-coupled with a common mode volt- age level of 0.5v. the lo path consists of an lo buffer with single-ended or differential inputs and precision quadrature generators to drive the mixers. the supply voltage range is 3.15v to 3.45v. an external voltage can be applied to the linopt pin to further improve 3rd -order linearity performance. 200mhz to 6000mhz direct conversion transmitter application a pplica t ions n frequency range: 200mhz to 6000mhz n output ip3: +31dbm typical at 2140mhz (uncalibrated) +35dbm typical (user optimized) n single pin calibration to optimize oip3 n low output noise floor at 6mhz offset: no rf: C160.6dbm/hz p out = 5dbm: C155.5dbm/hz n integrated lo buffer and lo quadrature phase generator n high impedance dc interface to baseband inputs with 0.5v common mode voltage* n 50 single-ended lo and rf ports n 3.3v operation n fast turn-off/on: 10ns/17ns n 24-lead utqfn 4mm 4mm package n lte, gsm/edge, w-cdma, td-scdma, cdma2k, wimax basestations n image reject upconverters n point-to-point microwave links n broadcast modulator n military radio l , lt, ltc, ltm, linear technology and the linear logo are registered trademarks of linear technology corporation. all other trademarks are the property of their respective owners. *contact ltc marketing for other common mode voltage versions. 90o 0o LTC5588-1 v cc vmi vmi 1nf 50 1nf 6.8pf 3.3v 0.2pf baseband generator rf = 200mhz to 6000mhz 1nf + 4.7f s2 en i-channel q-channel 55881 ta01a i-dac q-dac vco/synthesizer pa linopt ltc2630 acpr, altcpr and acpr, altcpr with optimized linopt voltage vs rf output power at 2.14ghz for w-cdma 1, 2 and 4 carriers rf output power per carrier (dbm) ?20 acpr, altcpr (dbc) ?60 ?50 ?40 4c 2c 1c 0 55881 ta01b ?70 ?80 ?90 ?15 ?10 ?5 5 acpr acpr (opt) altcpr altcpr (opt) downlink test model 64 dpch f bb = 140mhz, f lo = 2280mhz www.datasheet.in
LTC5588-1  55881f p in c on f igura t ion a bsolu t e maxi m u m r a t ings supply voltage .........................................................3.8v common mode level of bbpi, bbmi, and bbpq, bbmq ...................................................0.55v voltage on any pin .......................... C0.3v to v cc + 0.3v t jmax .................................................................... 150c operating temperature range .................C40c to 85c storage temperature range .................. C65c to 150c (note 1) 24 23 22 21 20 19 7 8 9 top view gnd 25 g n d r f 26 pf24 package variation: pf24ma 24-lead (4mm s 4mm) plastic utqfn 10 11 12 6 5 4 3 2 1 13 14 15 16 17 18 en gnd lop lom gnd nc v cc2 gndrf rf nc gndrf nc v cc1 gnd bbmi bbpi gnd gndrf linopt gnd bbmq bbpq gnd gndrf t jmax = 150c, ja = 43c/w exposed pads (pins 25, 26) are gnd, must be soldered to pcb o r d er i n f or m a t ion lead free finish tape and reel part marking package description temperature range ltc5588ipf-1#pbf ltc5588ipf-1#trpbf 5881t 24-lead (4mm x 4mm) plastic utqfn C40c to 85c consult ltc marketing for parts specified with wider operating temperature ranges. consult ltc marketing for information on non-standard lead based finish parts. for more information on lead free part marking, go to: http://www.linear.com/leadfree/ for more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ e lec t rical c harac t eris t ics v cc = 3.3v, en = 3.3v, t a = 25c, lop ac-terminated with 50 to ground, bbpi, bbmi, bbpq, bbmq common mode dc voltage v cmbb = 0.5v dc , i and q baseband input signal = 100khz cw, 1v p-p(diff) each, i and q 90 shifted, lower sideband selection, linopt pin floating, unless otherwise noted. test circuit is shown in figure 8. symbol parameter conditions min typ max units f lo = 240mhz, f rf = 239.9mhz, p lo = 10dbm, c7 = 4.7nh, c8 = 33pf, using u2 = anaren p/n b0310j50100a00 balun f rf(match) rf match frequency range s22 < C10db (note 10) 200 to 244 mhz f lo(match) lo match frequency range s11 < C10db 200 to 1500 mhz g v conversion voltage gain 20 ? log (v rf(out)(50) /v in(diff)(i or q) ) C5.9 db p out absolute output power 1v p-p(diff) cw signal, i and q C1.9 dbm op1db output 1db compression 5.1 dbm oip2 output 2nd-order intercept (notes 4, 5) 77.3 dbm oip3 output 3rd-order intercept (notes 4, 6) 28 dbm nfloor rf output noise floor no baseband ac input signal (note 3) C168.3 dbm/hz ir image rejection (note 7) C27 dbc loft carrier leakage (lo feedthrough) (note 7) C53 dbm www.datasheet.in
LTC5588-1  55881f symbol parameter conditions min typ max units f lo = 450mhz, f rf = 449.9mhz, p lo = 10dbm, c7 = 2.7nh, c8 = 10pf, u2 = anaren p/n b0310j50100a00 balun f rf(match) rf match frequency range s22 < C10db (note 10) 350 to 468 mhz f lo(match) lo match frequency range s11 < C10db 200 to 1500 mhz g v conversion voltage gain 20 ? log (v rf(out)(50) /v in(diff)(i or q) ) C2.6 db p out absolute output power 1v p-p(diff) cw signal, i and q 1.4 dbm op1db output 1db compression 8.6 dbm oip2 output 2nd-order intercept (notes 4, 5) 72 dbm oip3 output 3rd-order intercept (notes 4, 6) 30 dbm nfloor rf output noise floor no baseband ac input signal (note 3) p out = 1dbm (note 3) C165.2 C159.8 dbm/hz dbm/hz ir image rejection (note 7) C53 dbc loft carrier leakage (lo feedthrough) (note 7) C45 dbm f lo = 900mhz, f rf = 899.9mhz, p lom = 0dbm, c7 = 6.8pf, c8 = 0.2pf f rf(match) rf match frequency range s22 < C10db 700 to 5000 mhz f lo(match) lo match frequency range s11 < C10db 600 to 6000 mhz g v conversion voltage gain 20 ? log (v rf(out)(50) /v in(diff)(i or q) ) 0 db p out absolute output power 1v p-p(diff) cw signal, i and q 4.0 dbm op1db output 1db compression 12.1 dbm oip2 output 2nd-order intercept (notes 4, 5) 73.6 dbm oip3 output 3rd-order intercept (notes 4, 6) optimized (notes 4, 6, 11) 31.3 35.1 dbm dbm nfloor rf output noise floor no baseband ac input signal (note 3) p out = 5dbm (note 3) p lom = 10dbm C161.6 C155.1 dbm/hz dbm/hz ir image rejection (note 7) C45.5 dbc loft carrier leakage (lo feedthrough) (note 7) en = low (note 7) C43.1 C68.9 dbm dbm f lo = 1900mhz, f rf = 1899.9mhz, p lom = 0dbm, c7 = 6.8pf, c8 = 0.2pf f rf(match) rf match frequency range s22 < C10db 700 to 5000 mhz f lo(match) lo match frequency range s11 < C10db 600 to 6000 mhz g v conversion voltage gain 20 ? log (v rf(out)(50) /v in(diff)(i or q) ) 0.4 db p out absolute output power 1v p-p(diff) cw signal, i and q 4.4 dbm op1db output 1db compression 12.4 dbm oip2 output 2nd-order intercept (notes 4, 5) 58.8 dbm oip3 output 3rd-order intercept (notes 4, 6) optimized (notes 4, 6, 11) 30.3 32.7 dbm dbm nfloor rf output noise floor no baseband ac input signal (note 3) C160.6 dbm/hz ir image rejection (note 7) C54.4 dbc loft carrier leakage (lo feedthrough) (note 7) C40.9 dbm e lec t rical c harac t eris t ics v cc = 3.3v, en = 3.3v, t a = 25c, lop ac-terminated with 50 to ground, bbpi, bbmi, bbpq, bbmq common mode dc voltage v cmbb = 0.5v dc , i and q baseband input signal = 100khz cw, 1v p-p(diff) each, i and q 90 shifted, lower sideband selection, linopt pin floating, unless otherwise noted. test circuit is shown in figure 8. www.datasheet.in
LTC5588-1  55881f e lec t rical c harac t eris t ics v cc = 3.3v, en = 3.3v, t a = 25c, lop ac-terminated with 50 to ground, bbpi, bbmi, bbpq, bbmq common mode dc voltage v cmbb = 0.5v dc , i and q baseband input signal = 100khz cw, 1v p-p(diff) each, i and q 90 shifted, lower sideband selection, linopt pin floating, unless otherwise noted. test circuit is shown in figure 8. symbol parameter conditions min typ max units f lo = 2140mhz, f rf = 2139.9mhz, p lom = 0dbm, c7 = 6.8pf, c8 = 0.2pf f rf(match) rf match frequency range s22 < C10db 700 to 5000 mhz f lo(match) lo match frequency range s11 < C10db 600 to 6000 mhz g v conversion voltage gain 20 ? log (v rf(out)(50) /v in(diff)(i or q) ) 0.2 db p out absolute output power 1v p-p(diff) cw signal, i and q 4.2 dbm op1db output 1db compression 12.0 dbm oip2 output 2nd order intercept (notes 4, 5) 58.5 dbm oip3 output 3rd order intercept (notes 4, 6) optimized (notes 4, 6, 11) 30.9 35.1 dbm dbm nfloor rf output noise floor no baseband ac input signal (note 3) p out = 5dbm (note 3) p lom = 10dbm C160.6 C155.5 dbm/hz dbm/hz ir image rejection (note 7) C56.6 dbc loft carrier leakage (lo feedthrough) (note 7) C39.6 dbm f lo = 2600mhz, f rf = 2599.9mhz, p lom = 0dbm, c7 = 6.8pf, c8 = 0.2pf f rf(match) rf match frequency range s22 < C10db 700 to 5000 mhz f lo(match) lo match frequency range s11 < C10db 600 to 6000 mhz g v conversion voltage gain 20 ? log (v rf(out)(50) /v in(diff)(i or q) ) C0.2 db p out absolute output power 1v p-p(diff) cw signal, i and q 3.8 dbm op1db output 1db compression 11.4 dbm oip2 output 2nd-order intercept (notes 4, 5) 61.1 dbm oip3 output 3rd-order intercept (notes 4, 6) optimized (notes 4, 6, 11) 29.2 39.5 dbm dbm nfloor rf output noise floor no baseband ac input signal (note 3) C160.5 dbm/hz ir image rejection (note 7) C48.8 dbc loft carrier leakage (lo feedthrough) (note 7) C35.5 dbm f lo = 3500mhz, f rf = 3499.9mhz, p lom = 0dbm, c7 = 6.8pf, c8 = 0.2pf f rf(match) rf match frequency range s22 < C10db 700 to 5000 mhz f lo(match) lo match frequency range s11 < C10db 600 to 6000 mhz g v conversion voltage gain 20 ? log (v rf(out)(50) /v in(diff)(i or q) ) C1.0 db p out absolute output power 1v p-p(diff) cw signal, i and q 3.0 dbm op1db output 1db compression 10.5 dbm oip2 output 2nd-order intercept (notes 4, 5) 67.6 dbm oip3 output 3rd-order intercept (notes 4, 6) optimized (notes 4, 6, 11) 23.5 27.5 dbm dbm nfloor rf output noise floor no baseband ac input signal (note 3) C160.1 dbm/hz ir image rejection (note 7) C36.8 dbc loft carrier leakage (lo feedthrough) (note 7) C37.5 dbm f lo = 5800mhz, f rf = 5799.9mhz, p lom = 0dbm, c7 = 6.8pf, c8 = 0.2pf f rf(match) rf match frequency range s22, < C10db 700 to 5000 mhz f lo(match) lo match frequency range s11, < C10db 600 to 6000 mhz g v conversion voltage gain 20 ? log (v rf(out)(50) /v in(diff)(i or q) ) C9.1 db www.datasheet.in
LTC5588-1  55881f note 1: stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. exposure to any absolute maximum rating condition for extended periods may affect device reliability and lifetime. note 2: the LTC5588-1 is guaranteed functional over the operating temperature range from C40c to 85c. note 3: at 6mhz offset from the lo signal frequency. 100nf between bbpi and bbmi, 100nf between bbpq and bbmq. note 4: baseband inputs are driven with 4.5mhz and 5.5mhz tones. note 5: im2 is measured at f lo C 10mhz. note 6: im3 is measured at f lo C 3.5mhz and f lo C 6.5mhz. oip3 = lowest of (1.5 ? p{f lo -5.5mhz} C 0.5 ? p{f lo -6.5mhz}) and (1.5 ? p{f lo -4.5mhz} C 0.5 ? p{f lo -3.5mhz}). note 7: without image or lo feedthrough nulling (unadjusted). e lec t rical c harac t eris t ics v cc = 3.3v, en = 3.3v, t a = 25c, lop ac-terminated with 50 to ground, bbpi, bbmi, bbpq, bbmq common mode dc voltage v cmbb = 0.5v dc , i and q baseband input signal = 100khz cw, 1v p-p(diff) each, i and q 90 shifted, lower sideband selection, linopt pin floating, unless otherwise noted. test circuit is shown in figure 8. symbol parameter conditions min typ max units p out absolute output power 1v p-p(diff) cw signal, i and q C5.1 dbm op1db output 1db compression 1.9 dbm oip2 output 2nd-order intercept (notes 4, 5) 35.4 dbm oip3 output 3rd-order intercept (notes 4, 6) 17.9 dbm nfloor rf output noise floor no baseband ac input signal (note 3) C156.7 dbm/hz ir image rejection (note 7) C32.3 dbc loft carrier leakage (lo feedthrough) (note 7) C30.2 dbm baseband inputs (bbpi, bbmi, bbpq, bbmq) bw bb baseband bandwidth C1db bandwidth, r source = 25, single ended 430 mhz i b(bb) baseband input current single ended C136 a r in(se) input resistance single ended C3 k v cmbb dc common mode voltage externally applied 0.5 v v swing amplitude swing no hard clipping, single ended 0.86 v p-p power supply (v cc1 , v cc2 ) v cc supply voltage 3.15 3.3 3.45 v i cc(on) supply current en = high 275 303 325 ma i cc(off) supply current, sleep mode en = 0v 33 900 a t on turn-on time en = low to high (notes 8, 13) 17 ns t off turn-off time en = high to low (notes 9, 13) 10 ns t on(ir) image rejection settling en = low to high, LTC5588-1  55881f typical p er f or m ance c harac t eris t ics output ip3 vs rf frequency (p lom = 0dbm) output ip2 vs rf frequency (p lom = 10dbm) p1db vs rf frequency (p lom = 0dbm or p lom = 10dbm) lo feedthrough to rf output vs lo frequency (p lom = 0dbm) supply current vs temperature floating linopt voltage vs temperature voltage gain vs rf frequency (p lom = 0dbm or p lom = 10dbm) v cc = 3.3v, en = 3.3v, t a = 25c, lop input ac-terminated with 50 to ground, bbpi, bbmi, bbpq, bbmq inputs 0.5v dc , and 1v p-p(diff) , baseband input frequencies = 4.5mhz and 5.5mhz for oip3 and oip2, or else baseband input frequency = 100khz, i and q 90 shifted, lower sideband selection, linopt pin floating, unless otherwise noted. test circuit is shown in figure 8. temperature (c) ?40 supply current (ma) 300 320 310 60 55881 g01 280 290 ?15 10 35 85 3.45v 3.3v 3.15v rf frequency (ghz) 0 ?10 voltage gain (db) ?8 ?6 ?4 ?2 2 1 2 3 4 55881 g03 5 6 0 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c rf frequency (ghz) 0 0 oip3 (dbm) 10 20 30 40 1 2 3 4 55881 g04 5 6 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c output ip3 vs rf frequency (p lom = 10dbm) rf frequency (ghz) 0 0 oip3 (dbm) 10 20 30 40 1 2 3 4 55881 g05 5 6 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c output ip2 vs rf frequency (p lom = 0dbm) rf frequency (ghz) 0 30 oip2 (dbm) 40 50 60 70 90 1 2 3 4 55881 g06 5 6 80 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c rf frequency (ghz) 0 30 oip2 (dbm) 40 50 60 70 90 1 2 3 4 55881 g07 5 6 80 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c rf frequency (ghz) 0 14 12 10 8 6 4 2 0 3 5 55881 g08 1 2 4 6 p1db (dbm) 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c lo frequency (ghz) 0 ?60 lo feedthrough (dbm) ?50 ?40 ?30 ?20 1 2 3 4 55881 g09 5 6 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c temperature (c) ?40 2.4 linopt voltage (v) 2.5 2.6 2.7 3.45v 3.3v 3.15v ?15 10 35 60 55881 g02 85 www.datasheet.in
LTC5588-1  55881f lo feedthrough to rf output vs rf power (p lom = 0dbm, f rf = 900mhz) image rejection vs rf power (p lom = 0dbm, f rf = 900mhz) lo feedthrough to rf output vs rf power (p lom = 0dbm, f rf = 2140mhz) image rejection vs rf power (p lom = 0dbm, f rf = 2140mhz) output ip3 vs linopt voltage (f lo = 450mhz, p lom = 0dbm) output ip3 vs linopt voltage (f lo = 900mhz, p lom = 0dbm) lo feedthrough to rf output vs lo frequency (p lom = 10dbm) image rejection vs lo frequency (p lom = 0dbm) lo feedthrough to rf output vs lo frequency for en = low typical p er f or m ance c harac t eris t ics v cc = 3.3v, en = 3.3v, t a = 25c, lop input ac-terminated with 50 to ground, bbpi, bbmi, bbpq, bbmq inputs 0.5v dc , and 1v p-p(diff) , baseband input frequencies = 4.5mhz and 5.5mhz for oip3 and oip2, or else baseband input frequency = 100khz, i and q 90 shifted, lower sideband selection, linopt pin floating, unless otherwise noted. test circuit is shown in figure 8. lo frequency (ghz) 0 ?60 lo feedthrough (dbm) ?50 ?40 ?30 ?20 1 2 3 4 55881 g10 5 6 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c lo frequency (ghz) 0 ?60 image rejection (dbc) ?50 ?40 ?30 ?20 1 2 3 4 55881 g11 5 6 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c lo frequency (ghz) 0 ?80 lo feedthrough (dbm) ?70 ?60 ?50 ?40 ?20 1 2 3 4 55881 g12 5 6 ?30 p lom = 10dbm p lom = 0dbm rf power (dbm) ?15 ?45 lo feedthrough (dbm) ?44 ?43 ?42 ?41 ?40 ?10 ?5 0 5 55881 g13 10 15 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c rf power (dbm) ?15 ?55 image rejection (dbc) ?50 ?45 ?40 ?10 ?5 0 5 55881 g14 10 15 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c rf power (dbm) ?15 ?48 lo feedthrough (dbm) ?46 ?44 ?42 ?40 ?36 ?10 ?5 0 5 55881 g15 10 15 ?38 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c rf power (dbm) ?15 ?60 image rejection (dbc) ?58 ?56 ?54 ?52 ?48 ?10 ?5 0 5 55881 g16 10 15 ?50 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g17 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c 5 parts shown linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g18 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c 5 parts shown www.datasheet.in
LTC5588-1  55881f output ip3 vs linopt voltage (f lo = 3500mhz, p lom = 0dbm) output ip3 vs rf frequency for high side lo injection (f bb1 = 140mhz, f bb2 = 141mhz, p lom = 0dbm) output ip3 vs linopt voltage (f lo = 1900mhz, p lom = 0dbm) output ip3 vs linopt voltage (f lo = 2140mhz, p lom = 0dbm) output ip3 vs linopt voltage (f lo = 2600mhz, p lom = 0dbm) typical p er f or m ance c harac t eris t ics v cc = 3.3v, en = 3.3v, t a = 25c, lop input ac-terminated with 50 to ground, bbpi, bbmi, bbpq, bbmq inputs 0.5v dc , and 1v p-p(diff) , baseband input frequencies = 4.5mhz and 5.5mhz for oip3 and oip2, or else baseband input frequency = 100khz, i and q 90 shifted, lower sideband selection, linopt pin floating, unless otherwise noted. test circuit is shown in figure 8. linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g19 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c 5 parts shown linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g20 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c 5 parts shown linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g21 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c 5 parts shown linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g22 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c 5 parts shown rf frequency (ghz) 0 0 oip3 (dbm) 10 20 30 40 1 2 3 4 55881 g23 5 6 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = f rf + f bb1 output ip3 vs rf frequency for high side lo injection (f bb1 = 140mhz, f bb2 = 141mhz, p lom = 10dbm) rf frequency (ghz) 0 0 oip3 (dbm) 10 20 30 40 1 2 3 4 55881 g24 5 6 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = f rf + f bb1 output ip3 vs linopt voltage (f rf1 = 449mhz, f rf2 = 450mhz, p lom = 0dbm) output ip3 vs linopt voltage (f rf1 = 899mhz, f rf2 = 900mhz, p lom = 0dbm) output ip3 vs linopt voltage (f rf1 = 1899mhz, f rf2 = 1900mhz, p lom = 0dbm) linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g25 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = 590mhz 5 parts shown linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g26 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = 1040mhz 5 parts shown linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g27 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = 2040mhz 5 parts shown www.datasheet.in
LTC5588-1  55881f typical p er f or m ance c harac t eris t ics v cc = 3.3v, en = 3.3v, t a = 25c, lop input ac-terminated with 50 to ground, bbpi, bbmi, bbpq, bbmq inputs 0.5v dc , and 1v p-p(diff) , baseband input frequencies = 4.5mhz and 5.5mhz for oip3 and oip2, or else baseband input frequency = 100khz, i and q 90 shifted, lower sideband selection, linopt pin floating, unless otherwise noted. test circuit is shown in figure 8. output ip3 vs linopt voltage (f rf1 = 2139mhz, f rf2 = 2140mhz, p lom = 0dbm) output ip3 vs linopt voltage (f rf1 = 2599mhz, f rf2 = 2600mhz, p lom = 0dbm) output ip3 vs linopt voltage (f rf1 = 3499mhz, f rf2 = 3500mhz, p lom = 0dbm) linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g28 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = 2280mhz 5 parts shown linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g29 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = 2740mhz 5 parts shown linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g30 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = 3640mhz 5 parts shown output ip3 vs rf frequency for low side lo injection (f bb1 = 140mhz, f bb2 = 141mhz, p lom = 0dbm) output ip3 vs rf frequency for low side lo injection (f bb1 = 140mhz, f bb2 = 141mhz, p lom = 10dbm) output ip3 vs linopt voltage (f rf1 = 450mhz, f rf2 = 451mhz, p lom = 0dbm) rf frequency (ghz) 0 0 oip3 (dbm) 10 20 30 40 1 2 3 4 55881 g31 5 6 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = f rf ? f bb1 rf frequency (ghz) 0 0 oip3 (dbm) 10 20 30 40 1 2 3 4 55881 g32 5 6 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = f rf ? f bb1 linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g33 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = 310mhz 5 parts shown output ip3 vs linopt voltage (f rf1 = 900mhz, f rf2 = 901mhz, p lom = 0dbm) output ip3 vs linopt voltage (f rf1 = 1900mhz, f rf2 = 1901mhz, p lom = 0dbm) output ip3 vs linopt voltage (f rf1 = 2140mhz, f rf2 = 2141mhz, p lom = 0dbm) linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g34 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = 760mhz 5 parts shown linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g35 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = 1760mhz 5 parts shown linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g36 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = 2000mhz 5 parts shown www.datasheet.in
LTC5588-1 0 55881f typical p er f or m ance c harac t eris t ics v cc = 3.3v, en = 3.3v, t a = 25c, lop input ac-terminated with 50 to ground, bbpi, bbmi, bbpq, bbmq inputs 0.5v dc , and 1v p-p(diff) , baseband input frequencies = 4.5mhz and 5.5mhz for oip3 and oip2, or else baseband input frequency = 100khz, i and q 90 shifted, lower sideband selection, linopt pin floating, unless otherwise noted. test circuit is shown in figure 8. output ip3 vs linopt voltage (f rf1 = 2600mhz, f rf2 = 2601mhz, p lom = 0dbm) output ip3 vs linopt voltage (f rf1 = 3500mhz, f rf2 = 3501mhz, p lom = 0dbm) linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g37 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = 2460mhz 5 parts shown linopt voltage (v) 2.0 10 oip3 (dbm) 20 30 40 2.5 3.0 55881 g38 3.5 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c f lo = 3360mhz 5 parts shown gain distribution at 2140mhz gain (db) ?0.6 ?0.4 ?0.2 0 0.2 0.4 0.6 percentage (%) 30 40 50 55881 g39 20 10 0 85c 25c ?40c output ip3 distribution at 2140mhz lo feedthrough distribution at 2140mhz image rejection distribution at 2140mhz oip3 (dbm) 30.4 31.2 32 32.8 33.6 34.4 0 percentage (%) 10 20 30 55881 g40 85c 25c ?40c note 12 lo feedthrough (dbm) ?44 ?42?43 ?41 ?40 ?39 ?38 ?37 0 percentage (%) 10 20 30 55881 g41 85c 25c ?40c image rejection (dbc) ?44 ?42?43 ?41 ?40 ?39 ?38 ?37 0 percentage (%) 10 20 40 30 55881 g41 85c 25c ?40c output noise floor distribution at 2140mhz output noise floor vs rf output power and lom port input power (f lo = 2140mhz) noise floor (dbm/hz) ?161.2 ?160.4 ?160.8 ?159.6 ?160.0 0 percentage (%) 20 40 60 10 30 50 55881 g43 85c 25c ?40c rf output power (dbm) ?15 noise floor at 30mhz offset (dbm/hz) ?145 ?140 ?135 5 55881 g44 ?150 ?155 ?160 ?10 ?5 0 10 ?10dbm ?5dbm 0dbm 5dbm 10dbm 15dbm f bb = 2khz, cw (note 3) output noise floor vs rf output power and differential lo input power (f lo = 2140mhz) rf output power (dbm) ?15 noise floor at 30mhz offset (dbm/hz) ?145 ?140 ?135 5 55881 g45 ?150 ?155 ?160 ?10 ?5 0 10 ?10dbm ?5dbm 0dbm 5dbm 10dbm 15dbm 20dbm lo balun = using bd1631j50100a f bb = 2khz, cw (note 3) www.datasheet.in
LTC5588-1  55881f typical p er f or m ance c harac t eris t ics v cc = 3.3v, en = 3.3v, t a = 25c, lop input ac-terminated with 50 to ground, bbpi, bbmi, bbpq, bbmq inputs 0.5v dc , and 1v p-p(diff) , baseband input frequencies = 4.5mhz and 5.5mhz for oip3 and oip2, or else baseband input frequency = 100khz, i and q 90 shifted, lower sideband selection, linopt pin floating, unless otherwise noted. test circuit is shown in figure 8. return loss vs frequency lo feedthrough to rf output vs lo frequency after nulling at 25c (p lom = 0dbm) output noise floor vs rf frequency (no ac baseband input signal, p lom = 10dbm) image rejection vs lo frequency after nulling at 25c (p lom = 10dbm) lo feedthrough to rf output vs lo frequency (p lom = C10dbm) frequency (ghz) 0 ?25 return loss (db) ?20 ?15 ?10 ?5 0 1 2 3 4 55881 g46 5 6 lom port, en = high lop port, en = high rf port, en = high rf port, en = low lo port with bd1631j50100a00 lom port, en = low lop port, en = low rf frequency (ghz) 0 ?156 ?158 ?160 ?162 ?164 ?166 ?168 ?170 3 5 55881 g47 1 2 4 6 noise floor at 6mhz offset (dbm/hz) 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c note 3 rf frequency (ghz) 0 ?156 ?158 ?160 ?162 ?164 ?166 ?168 ?170 3 5 55881 g48 1 2 4 6 noise floor at 6mhz offset (dbm/hz) 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c note 3 lo frequency (ghz) 0 ?90 lo feedthrough (dbm) ?80 ?70 ?60 ?50 ?40 1 2 55881 g49 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c 5 parts shown lo feedthrough to rf output vs lo frequency after nulling at 25c (p lom = 10dbm) lo frequency (ghz) 0 ?90 lo feedthrough (dbm) ?80 ?70 ?60 ?50 ?40 1 2 55881 g50 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c 5 parts shown image rejection vs lo frequency after nulling at 25c (p lom = 0dbm) lo frequency (ghz) 0 ?90 image rejection (dbc) ?80 ?70 ?60 ?50 ?40 1 2 55881 g51 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c 5 parts shown output noise floor vs rf frequency (no ac baseband input signal, p lom = 0dbm) lo frequency (ghz) 0 ?90 image rejection (dbc) ?80 ?70 ?60 ?50 ?40 1 2 55881 g51 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c 5 parts shown lo frequency (ghz) 0 ?60 lo feedthrough (dbm) ?50 ?40 ?30 ?20 1 2 55881 g53 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c output www.datasheet.in
LTC5588-1  55881f typical p er f or m ance c harac t eris t ics v cc = 3.3v, en = 3.3v, t a = 25c, lop input ac-terminated with 50 to ground, bbpi, bbmi, bbpq, bbmq inputs 0.5v dc , and 1v p-p(diff) , baseband input frequencies = 4.5mhz and 5.5mhz for oip3 and oip2, or else baseband input frequency = 100khz, i and q 90 shifted, lower sideband selection, linopt pin floating, unless otherwise noted. test circuit is shown in figure 8. lo feedthrough to rf output vs lo frequency (p lom = 5dbm) lo feedthrough to rf output vs lo frequency (p lom = 10dbm) lo feedthrough to rf output vs lo frequency (p lom = 15dbm) lo frequency (ghz) 0 ?60 lo feedthrough (dbm) ?50 ?40 ?30 ?20 1 2 55881 g55 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c lo frequency (ghz) 0 ?60 lo feedthrough (dbm) ?50 ?40 ?30 ?20 1 2 55881 g56 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c lo frequency (ghz) 0 ?60 lo feedthrough (dbm) ?50 ?40 ?30 ?20 1 2 55881 g57 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c image rejection vs lo frequency (p lom = C10dbm) image rejection vs lo frequency (p lom = C5dbm) lo frequency (ghz) 0 ?60 image rejection (dbc) ?50 ?40 ?30 ?20 1 2 55881 g58 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c lo frequency (ghz) 0 ?60 image rejection (dbc) ?50 ?40 ?30 ?20 1 2 55881 g59 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c image rejection vs lo frequency (p lom = 5dbm) lo feedthrough to rf output vs lo frequency (p lom = C5dbm) lo frequency (ghz) 0 ?60 lo feedthrough (dbm) ?50 ?40 ?30 ?20 1 2 55881 g54 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c lo frequency (ghz) 0 ?60 image rejection (dbc) ?50 ?40 ?30 ?20 1 2 55881 g60 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c image rejection vs lo frequency (p lom = 10dbm) lo frequency (ghz) 0 ?60 image rejection (dbc) ?50 ?40 ?30 ?20 1 2 55881 g61 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c www.datasheet.in
LTC5588-1  55881f typical p er f or m ance c harac t eris t ics v cc = 3.3v, en = 3.3v, t a = 25c, lop input ac-terminated with 50 to ground, bbpi, bbmi, bbpq, bbmq inputs 0.5v dc , and 1v p-p(diff) , baseband input frequencies = 4.5mhz and 5.5mhz for oip3 and oip2, or else baseband input frequency = 100khz, i and q 90 shifted, lower sideband selection, linopt pin floating, unless otherwise noted. test circuit is shown in figure 8. output ip3 vs rf frequency (p lom = 0dbm, f im3 = f lo + 14.5mhz) image rejection vs lo frequency (p lom = 15dbm) lo frequency (ghz) 0 ?60 image rejection (dbc) ?50 ?40 ?30 ?20 1 2 55881 g62 3 4 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c rf frequency (ghz) 0 0 oip3 (dbm) 10 20 30 40 1 2 3 4 55881 g63 5 6 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c output ip2 vs rf frequency (p lom = 0dbm, f im2 = f lo + 10mhz) rf frequency (ghz) 0 30 oip2 (dbm) 60 50 40 70 80 90 1 2 3 4 55881 g64 5 6 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c output ip2 vs rf frequency (p lom = 10dbm, f im2 = f lo + 10mhz) output im3 vs rf 2-tone power (p lom = 0dbm, f rf = 900mhz, note 6) output ip3 vs rf frequency (p lom = 10dbm, f im3 = f lo + 14.5mhz) rf frequency (ghz) 0 0 oip3 (dbm) 10 20 30 40 1 2 3 4 55881 g65 5 6 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c rf frequency (ghz) 0 30 oip2 (dbm) 60 50 40 70 80 90 1 2 3 4 55881 g66 5 6 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c rf power per tone (dbm) ?10 ?40 ?30 ?20 5 55881 g67 ?50 ?60 ?5 0 10 ?70 ?80 ?90 im3 (dbc) 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c output im2 vs rf 2-tone power (p lom = 0dbm, f rf = 900mhz, f im2 = 890mhz) rf power per tone (dbm) ?10 ?40 ?30 ?20 5 55881 g68 ?50 ?60 ?5 0 10 ?70 ?80 ?90 im2 (dbc) 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c output im3 vs rf 2-tone power (p lom = 0dbm, f rf = 900mhz, f im3 = 914.5mhz) rf power per tone (dbm) ?10 ?40 ?30 ?20 5 55881 g69 ?50 ?60 ?5 0 10 ?70 ?80 ?90 im3 (dbc) 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c www.datasheet.in
LTC5588-1  55881f typical p er f or m ance c harac t eris t ics v cc = 3.3v, en = 3.3v, t a = 25c, lop input ac-terminated with 50 to ground, bbpi, bbmi, bbpq, bbmq inputs 0.5v dc , and 1v p-p(diff) , baseband input frequencies = 4.5mhz and 5.5mhz for oip3 and oip2, or else baseband input frequency = 100khz, i and q 90 shifted, lower sideband selection, linopt pin floating, unless otherwise noted. test circuit is shown in figure 8. output im2 vs rf 2-tone power (p lom = 0dbm, f rf = 900mhz, f im2 = 910mhz) rf power per tone (dbm) ?10 ?40 ?30 ?20 5 55881 g70 ?50 ?60 ?5 0 10 ?70 ?80 ?90 im2 (dbc) 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c rf power per tone (dbm) ?10 ?40 ?30 ?20 5 55881 g71 ?50 ?60 ?5 0 10 ?70 ?80 ?90 im3 (dbc) 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c rf power per tone (dbm) ?15 ?40 ?30 ?20 5 55881 g72 ?50 ?60 ?10 ?5 0 10 ?70 ?80 ?90 im2 (dbc) 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c output im3 vs rf 2-tone power (p lom = 0dbm, f rf = 2140mhz, note 6) output im2 vs rf 2-tone power (p lom = 0dbm, f rf = 2140mhz, f im2 = 2130mhz) output im3 vs rf 2-tone power (p lom = 0dbm, f rf = 2140mhz, f im3 = 2154.5mhz) output im2 vs rf 2-tone power (p lom = 0dbm, f rf = 2140mhz, f im2 = 2150mhz) rf power per tone (dbm) ?10 ?40 ?30 ?20 5 55881 g73 ?50 ?60 ?5 0 10 ?70 ?80 ?90 im3 (dbc) 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c rf power per tone (dbm) ?15 ?40 ?30 ?20 5 55881 g74 ?50 ?60 ?10 ?5 0 10 ?70 ?80 ?90 im2 (dbc) 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c www.datasheet.in
LTC5588-1  55881f p in func t ions b lock diagra m en (pin 1): enable input. when the enable pin voltage is higher than 2v, the ic is on. when the input voltage is less than 1v, the ic is off. gnd (pins 2, 5, 8, 11, 12, 14, 17, 19, 20, 23, exposed pad pins 25 and 26): ground. pins 2, 5, 8, 11, 20, 23 and exposed pad pin 25 (group 1) are connected together internally while pins 12, 14, 17, 19 and exposed pad pin 26 (group 2) are tied together and serve as the ground return for the rf balun. for best overall performance all ground pins should be connected to rf ground. for best oip2 performance it is recommended to connect group 1 and group 2 only at second and lower level ground layers of the pcb, not the top layer. lop (pin 3): positive lo input. an ac-coupling capacitor (1nf) in series with 50 to ground provides the best oip2 performance. lom (pin 4): negative lo input. an ac-coupled 50 lo signal source can be applied to this pin. nc (pins 6, 13, 15): no electrical connection. linopt (pin 7): linearity optimization input. an external voltage can be applied to this pin to optimize the linearity (oip3) under a specific application condition. its optimum voltage depends on the lo frequency, temperature, supply voltage, baseband frequency and signal bandwidth. the typical input voltage range is from 2v to 3.7v. the pin can be left floating for good overall linearity performance. bbmq, bbpq (pins 9, 10): baseband inputs of the q chan- nel. the input impedance of each input is about C3k. it should be externally biased to a 0.5v common mode level. do not apply common mode voltage beyond 0.55v dc . rf (pin 16): rf output. the rf output is a dc-coupled single-ended output with 50 output impedance at rf frequencies. an ac-coupling capacitor of 6.2pf (c7), should be used at this pin for 0.7ghz to 3.5ghz operation. v cc1 , v cc2 (pins 24, 18): power supply. it is recommended to use 2 1nf and 2 4.7f capacitors for decoupling to ground on these pins. bbpi, bbmi (pins 21, 22): baseband inputs of the i channel. the input impedance of each input is about C3k. it should be externally biased to a 0.5v common mode level. do not apply common mode voltage beyond 0.55v dc . 90 0 i channel q channel vmi vmi rf en lop lom nc linopt 16 3 11 8 gnd 5 2 9 10 22 21 24 18 nc 13 15 bbpi bbmi bbpq bbmq 25 23 20 gnd 7 6 4 55881 bd gnd rf 1 17 v cc1 v cc2 26 12 14 19 www.datasheet.in
LTC5588-1  55881f a pplica t ions i n f or m a t ion the LTC5588-1 consists of i and q input differential volt- age-to-current converters, i and q upconverting mixers, an rf output balun, an lo quadrature phase generator and lo buffers. external i and q baseband signals are applied to the dif- ferential baseband input pins, bbpi, bbmi and bbpq, bbmq. these voltage signals are converted to currents and translated to rf frequency by means of double-balanced upconverting mixers. the mixer outputs are combined at the inputs of the rf output balun, which also transforms the output impedance to 50. the center frequency of the resulting rf signal is equal to the lo signal frequency. the lo input drives a phase shifter which splits the lo signal into in-phase and quadrature signals. these lo signals are then applied to on-chip buffers which drive the upconverting mixers. in most applications, the lom input is driven by the lo source via a 1nf coupling capacitor, while the lop input is terminated with 50 to rf ground via a 1nf coupling capacitor. the rf output is single ended and internally 50 matched across a wide rf frequency range from 700mhz to 5ghz with better than 10db return loss using c7 = 6.8pf and c8 = 0.2pf (s22 < C10db). see figure 8. for 240mhz operation, c7 = 4.7nh and c8 = 33pf is rec- ommended. for 450mhz, c7 = 2.7nh and c8 = 10pf is bbpi bbmi gnd lomi lopi balun gndrf rf from q channel 55881 f01 14 14 4pf 4pf LTC5588-1 v cm = 0.5v v cc2 = 3.3v v cc1 = 3.3v recommended. note that the frequency of the best match is set lower than the band center frequency to compensate the gain roll-off of the on-chip rf output balun at lower frequency. at 240mhz and 450mhz operations, the image rejection and the large-signal noise performance is better using higher lo drive levels. however, if the drive level causes internal clipping, the lo leakage degrades. using a balun such as anaren p/n b0310j50100a00 increases the lo drive level without internal clipping and provides a relatively broadband lo port impedance match. baseband interface the baseband inputs (bbpi, bbmi, bbpq, bbmq) present a single-ended input impedance of about C3k. because of the negative input impedance, it is important to keep the source resistance at each baseband input low enough such that the total input impedance remains positive across the baseband frequency. each of the four baseband inputs has a capacitor of 4pf in series with 14 connected to ground and a pnp emitter follower in parallel (see figure 1). the baseband bandwidth depends on the source impedance. for a 25 source impedance (50 terminated with 50), the baseband bandwidth (C1db) is about 430mhz. if a 2.7nh series inductor is inserted at each of the four baseband inputs, the C1db baseband bandwidth can be increased to about 650mhz. figure 1. simplified circuit schematic of the LTC5588-1 (only i channel is shown) www.datasheet.in
LTC5588-1  55881f a pplica t ions i n f or m a t ion it is recommended to compensate the baseband input impedance in the baseband lowpass filter design in order to achieve best gain flatness vs baseband frequency. the s-parameters for (each of) the baseband inputs is given in table 1. table 1. single-ended bb input impedance vs frequency for en = high and v dc = 0.5v frequency (mhz) bb input impedance reflection coefficient mag angle 0.1 C3700 1.03 C0.13 1 C3900-j340 1.03 C0.13 2 C3700-j950 1.03 C0.37 4 C3200-j1500 1.03 C0.68 8 C2100-j1900 1.03 C1.38 16 C860-j1600 1.03 C2.79 30 C300-j990 1.03 C5.3 60 C87-j520 1.03 C10.6 100 C35-j308 1.04 C18.2 140 C16-j226 1.03 C24.8 200 C6-j154 1.02 C36 250 C1.4-j120 1.01 C45 300 1.4-j102 0.99 C52 350 4.4-j87 0.96 C59 400 5.4-j74 0.94 C67 450 7-j66 0.90 C73 500 8.3-j58 0.87 C80 600 9.4-j47 0.82 C92 700 10-j38 0.77 C102 800 10-j32 0.74 C113 900 10.5-j27 0.71 C122 1000 10.5-j23 0.69 C129 the circuit is optimized for a common mode voltage of 0.5v which should be externally applied. the baseband pins should not be left floating to cause the internal pnps base current to pull the common mode voltage higher than the 0.55v limit, generating excessive current flow. if it occurs for an extended period, damage to the ic may result. in shutdown mode it is recommended to terminate to ground or to a 0.5v source with a value lower than 200. the pnps base current is about C136a ranging from C250a to C50a. it is recommended to drive the baseband inputs differen- tially to reduce even-order distortion products. when a dac is used as the signal source, a reconstruction filter should be placed between the dac output and the LTC5588-1 baseband inputs to avoid aliasing. figure 2 shows a typical baseband interface for zero-if repeater application. a 5th-order lowpass ladder filter is used with C0.3db cut-off of 60mhz. c1a, c1b, c3a and c3b are configured in a single-ended fashion in order to suppress common mode noise. l3a and l3b (0402 size) are used to compensate for passband droop due to the finite quality factor of the inductors l1a, l1b, l2a and l2b (0603 size). r3a and r3b improves the out-of-band noise performance. r3a = r3b = 0 (l3a and l3b omit- ted) provides best out-of-band noise performance but no passband droop compensation. in that case, l1a, l1b, l2a and l2b may have to be increased in size (higher quality factor) to limit passband droop. figure 2: baseband interface with 5th-order filter and 0.5v cm dac (only i channel is shown) bbpi r2a 1657 l2a 250nh gnd 0.5v dc 0.5v dc r2b 1657 bbmi 55881 f02 r2c 2497 r3a 71.57 r3b 71.57 r1a 71.57 r1b 71.57 l3a 100nh l3b 100nh l1a 250nh l1b 250nh l2b 250nh c2 39pf c1a 47pf c1b 47pf c3a 47pf c3b 47pf dac 10ma 10ma 10ma 10ma www.datasheet.in
LTC5588-1  55881f a pplica t ions i n f or m a t ion at each baseband pin, a 0.146v to 0.854v swing is de- veloped corresponding to a dac output current of 0ma to 20ma. a 3db lower gain can be achieved using r1a = r1b = 49.9; r2a = r2b = open; r2c = 100; r3a = r3b = 51; l1a = l1b = l2a = l2b = 180nh; c1a = c1b = c3a = c3b = 68pf; c2 = 56pf. lo section the internal lo chain consists of a quadrature phase shifter followed by lo buffers. the lom input can be driven single ended with 50 input impedance, while the lop input should be terminated with 50 through a dc blocking capacitor. the lop and lom inputs can also be driven differentially when an exceptionally low large-signal output noise floor is required. a simplified circuit schematic for the lop and lom inputs is given in figure 3. table 2 lists lom port input imped- ance vs frequency at en = high and p lom = 0dbm. for en = low and p lom = 0dbm the input impedance is given in table 3. the lom port input impedance is shown for en = high and low at p lom = 10dbm in table 4 and table 5, respectively. the circuit schematic of the demo board is shown in figure 8. a 50 termination can be connected to the lop port (j1). the lom port (j2) can also be terminated with a 50 while the lo power is applied to the lop (j1) port. in that case, the image rejection may be degraded. at 2.14ghz, the large-signal noise figure is about 2db better for dif- ferential lo drive (using bd1631j50100a00) with a lo power below 10dbm. the balun (u2) can be installed by removing c5 and c6 (see figure 8). using anaren p/n b0310j50100a00 improves image, lo leakage and large-signal noise performance at 240mhz and 450mhz. for this particular balun, an external blocking capacitor is required. figure 4 shows the return loss vs rf frequency is shown for the 240mhz and 450mhz frequency bands. figure 5 shows the corresponding gain vs rf frequency where the gain curve peaks at a higher frequency compared to the frequency with best match. note that the overall bandwidth degrades tuning the matching frequency lower. a similar technique can be used for 700mhz and 900mhz if gain flatness is important. table 2. lom port input impedance vs frequency for en = high and p lom = 0dbm (lop terminated with 50 ac to ground) frequency (ghz) lom input impedance reflection coefficient mag angle 0.2 98-j65 0.499 C29.8 0.25 87-j58 0.462 C34.3 0.3 79-j51 0.421 C38.8 0.4 69-j40 0.354 C45.8 0.5 63-j32 0.296 C52.4 0.6 59-j27 0.256 C58.4 0.7 55-j24 0.225 C64.9 0.8 52-j21 0.203 C72.5 0.9 50-j19 0.188 C79.6 1.0 48-j18 0.18 C86.9 1.2 44-j16 0.178 C101 1.4 41-j15 0.185 C111 1.6 39-j14 0.194 C118 1.8 38-j13 0.2 C123 2.0 37-j12 0.199 C128 2.5 36-j7.8 0.189 C146 3.0 32-j2.4 0.225 C171 3.5 28+j1.0 0.288 176 4.0 25+j2.4 0.35 173 4.5 23+j4.1 0.372 168 5.0 21+j6.2 0.417 162 5.5 19+j7.9 0.472 159 6.0 17+j8.7 0.519 157 figure 3: simplified circuit schematic for the lop and lom inputs 2.35v (3.3v in shutdown) lom lop v cc1 55881 f03 + ? www.datasheet.in
LTC5588-1  55881f a pplica t ions i n f or m a t ion table 3. lom port input impedance vs frequency for en = low and p lom = 0dbm (lop terminated with 50 ac to ground) frequency (ghz) lom input impedance reflection coefficient mag angle 0.2 95-j69 0.511 C31.4 0.25 84-j61 0.472 C36.2 0.3 76-j53 0.43 C41 0.4 67-j41 0.36 C48.5 0.5 61-j33 0.3 C55.6 0.6 57-j28 0.259 C61.9 0.7 54-j24 0.228 C68.7 0.8 51-j21 0.205 C76.5 0.9 48-j19 0.191 C83.6 1.0 47-j18 0.183 C90.9 1.2 43-j16 0.182 C105 1.4 40-j15 0.19 C114 1.6 39-j14 0.2 C121 1.8 38-j13 0.207 C125 2.0 37-j12 0.205 C131 2.5 35-j7.6 0.2 C149 3.0 31-j2.2 0.238 C172 3.5 27+j1.3 0.303 175 4.0 24+j2.9 0.363 171 4.5 22+j4.7 0.387 166 5.0 21+j7.0 0.427 160 5.5 18+j8.7 0.481 157 6.0 16+j9.7 0.524 154 table 4. lom port input impedance vs frequency for en = high and p lom = 10dbm (lop terminated with 50 ac to ground) frequency (ghz) lom input impedance reflection coefficient mag angle 0.2 96-j64 0.494 C30.6 0.25 86-j57 0.455 C35.1 0.3 77-j51 0.42 C40.2 0.4 69-j41 0.356 C46.6 0.5 62-j33 0.3 C54.1 0.6 58-j28 0.258 C59.1 0.7 55-j24 0.229 C66.6 0.8 52-j21 0.203 C73.1 0.9 50-j19 0.192 C80.6 1.0 48-j18 0.179 C87.5 1.2 44-j16 0.176 C102 1.4 41-j15 0.185 C112 1.6 39-j14 0.196 C119 1.8 38-j14 0.202 C123 2.0 37-j12 0.201 C128 2.5 36-j7.9 0.188 C146 3.0 32-j2.7 0.225 C170 3.5 28+j0.8 0.292 176 4.0 24+j2.0 0.348 172 4.5 23+j3.6 0.373 168 5.0 21+j5.9 0.42 162 5.5 19+j7.5 0.468 159 6.0 16+j8.5 0.518 157 www.datasheet.in
LTC5588-1 0 55881f table 5. lom port input impedance vs frequency for en = low and p lom = 10dbm (lop terminated with 50 ac to ground) frequency (ghz) lom input impedance reflection coefficient mag angle 0.2 92-j61 0.48 C32.1 0.25 83-j55 0.444 C36.9 0.3 75-j50 0.414 C42 0.4 66-j39 0.345 C49.3 0.5 60-j32 0.293 C57.4 0.6 56-j27 0.251 C63.2 0.7 53-j23 0.225 C71.2 0.8 50-j20 0.199 C78.8 0.9 48-j19 0.191 C86.6 1.0 46-j17 0.18 C93.6 1.2 42-j15 0.181 C108 1.4 40-j14 0.192 C117 1.6 38-j14 0.205 C123 1.8 37-j13 0.211 C127 2.0 36-j12 0.212 C132 2.5 35-j7.5 0.202 C150 3.0 31-j2.2 0.244 C172 3.5 27+j1.3 0.31 175 4.0 24+j2.7 0.363 171 4.5 22+j4.4 0.389 166 5.0 20+j6.8 0.433 160 5.5 18+j8.5 0.479 157 6.0 16+j9.5 0.525 154 a pplica t ions i n f or m a t ion frequency (mhz) 200 return loss (db) ?20 ?10 600 55881 f04 ?30 ?40 300 400 500 0 rf port, en = high, c7 = 4.7nh, c8 = 33pf rf port, en = low, c7 = 4.7nh, c8 = 33pf rf port, en = high, c7 = 2.7nh, c8 = 10pf rf port, en = low, c7 = 2.7nh, c8 = 10pf lo port, en = high, using b0310j50100a00 lo port, en = low, using b0310j50100a00 figure 4. rf and lo port return loss vs frequency for low band match (see figure 8) rf frequency (mhz) 200 voltage gain (db) ?6 ?4 600 55881 f05 ?8 ?10 300 400 500 0 ?2 3.3v, 85c 3.3v, 25c 3.15v, 25c 3.45v, 25c 3.3v, ?40c figure 5. low band voltage gain vs rf frequency using figure 4 matching the third harmonic content of the lo can degrade image rejection severely, it is recommended to keep the 3rd-order harmonic of the lo signal lower than the desirable image rejection minus 6db. although the second harmonic content of the lo is less sensitive, it can still be significant. the large-signal noise figure can be improved with higher lo input power. however, if the lo input power is too large to cause the internal lo signal clipping in the phase-shifter section, the image rejection can be degraded rapidly. this clipping point depends on the supply voltage, lo frequency, temperature and single ended vs differential lo drive. at f lo = 2140mhz, v cc = 3.3v, t = 25c and single- ended lo drive, this clipping point is at about 16.7dbm. for 3.15v it lowers to 16.1dbm. for differential drive it is about 21.6dbm. the differential lo port input impedance for en = high and p lo = 10dbm is given in table 6. www.datasheet.in
LTC5588-1  55881f table 6: differential lo input impedance vs frequency for en = high and p lo = 10dbm frequency (mhz) lo differential input impedance reflection coefficient mag angle 0.2 134-j48 0.247 C43 0.25 126-j51 0.247 C50 0.3 119-j46 0.223 C55 0.4 109-j45 0.215 C66 0.5 100-j40 0.194 C79 0.6 97-j36 0.181 C84 0.7 94-j36 0.184 C90 0.8 90-j35 0.186 C96 0.9 84-j34 0.198 C104 1.0 83-j33 0.198 C107 1.2 77-j36 0.237 C111 1.4 76-j37 0.243 C111 1.6 73-j38 0.262 C113 1.8 74-j37 0.254 C113 2.0 74-j35 0.251 C115 2.5 78-j28 0.199 C120 3.0 74-j15 0.173 C145 3.5 67-j2.9 0.197 C174 4.0 58+j7.3 0.275 168 4.5 51+j15 0.338 158 5.0 42+j18 0.433 156 5.5 34+j20 0.515 156 6.0 27+j16 0.596 160 a pplica t ions i n f or m a t ion table 7: differential lo input impedance vs frequency for en = low and p lo = 10dbm frequency (mhz) lo differential input impedance reflection coefficient mag angle 0.2 131-j48 0.243 C45 0.25 125-j52 0.250 C52 0.3 117-j46 0.221 C58 0.4 107-j45 0.215 C69 0.5 98-j40 0.197 C81 0.6 95-j36 0.183 C87 0.7 92-j35 0.186 C93 0.8 88-j34 0.188 C99 0.9 83-j33 0.200 C107 1.0 82-j32 0.199 C110 1.2 75-j35 0.237 C114 1.4 76-j35 0.240 C113 1.6 72-j36 0.259 C115 1.8 74-j35 0.248 C115 2.0 73-j33 0.245 C118 2.5 77-j25 0.191 C125 3.0 73-j12 0.172 C152 3.5 66-j0.2 0.206 180 4.0 56+j10 0.293 164 4.5 49+j18 0.362 154 5.0 39+j21 0.459 153 5.5 32+j22 0.538 153 6.0 25+j18 0.619 158 www.datasheet.in
LTC5588-1  55881f rf section after upconversion, the rf outputs of the i and q mixers are combined. an on-chip balun performs internal dif- ferential to single-ended conversion, while transforming the output signal to 50 as shown in figure 1. table 8 shows the rf port output impedance vs frequency for en = high. table 8. rf output impedance vs frequency for en = high frequency (mhz) rf output impedance reflection coefficient mag angle 0.2 7.8+j11 0.742 154 0.25 8.7+j13 0.723 149 0.3 9.7+j16 0.702 143 0.4 12+j21 0.660 133 0.5 16+j25 0.609 123 0.6 19+j29 0.560 114 0.7 24+j32 0.509 106 0.8 30+j34 0.457 98 0.9 35+j35 0.409 91 1.0 41+j34 0.359 85 1.2 52+j28 0.266 70 1.4 58+j18 0.180 57 1.6 58+j7.1 0.098 39 1.8 55+j0.2 0.042 3.4 1.9 52-j2.7 0.032 C52 2.0 50-j4.3 0.043 C92 2.5 39-j5.9 0.142 C149 3.0 32-j1.9 0.227 C173 3.2 30-j0.2 0.255 C180 3.5 27+j2.2 0.298 172 4.0 23+j4.5 0.365 167 4.5 22+j6.8 0.406 161 5.0 19+j11 0.475 151 5.5 17+j20 0.541 133 6.0 15+j27 0.613 120 a pplica t ions i n f or m a t ion the rf port output impedance for en = low is given in table 9. table 9. rf output impedance vs frequency for en = low frequency (mhz) rf output impedance reflection coefficient mag angle 0.2 7.2+j11 0.761 155 0.25 8.0+j13 0.742 149 0.3 9.0+j16 0.720 144 0.4 12+j21 0.675 133 0.5 15+j25 0.622 123 0.6 19+j29 0.571 115 0.7 23+j32 0.518 107 0.8 29+j34 0.464 99 0.9 35+j35 0.414 92 1.0 40+j34 0.363 86 1.2 51+j28 0.266 72 1.4 57+j18 0.175 60 1.6 57+j7.0 0.090 43 1.8 53+j0.4 0.030 7.0 1.9 51-j2.4 0.025 C74 2.0 48-j4.0 0.044 C111 2.5 38-j4.9 0.153 C155 3.0 31-j0.7 0.240 C177 3.2 29+1.0 0.266 C177 3.5 27+j3.6 0.308 169 4.0 24+j5.6 0.365 164 4.5 22+j6.9 0.405 161 5.0 19+j11 0.478 151 5.5 17+j20 0.563 132 6.0 15+j28 0.628 118 www.datasheet.in
LTC5588-1  55881f a pplica t ions i n f or m a t ion linearity optimization the linopt pin (pin 7) can be used to optimize the lin- earity of the rf circuitry. figure 6 shows the simplified schematic of the linopt pin interface. the nominal dc bias voltage of the linopt pin is 2.56v and the typical voltage window to drive the linopt pin for optimum linearity is 2v to 3.7v. since its input impedance for en = high is about 150, an external buffer may be required to output a current in the range of C2ma to 8ma. the linopt voltage for optimum linearity is a function of lo frequency, temperature, supply voltage, baseband frequency, high side or low side lo injection, process, signal bandwidth and rf output level. for zero-if systems the spectral regrowth is typically limited by the oip2 performance. in that case, optimiz- ing the linopt pin voltage may not improve the spectral regrowth. the spectral regrowth for systems with an if (for example 140mhz) will be set by the oip3 performance and optimizing linopt voltage can improve the spectral regrowth significantly (see figure 13). enable interface figure 7 shows a simplified schematic of the en pin in- terface. the voltage necessary to turn on the LTC5588-1 is 2v. to disable (shut down) the chip, the enable voltage must be below 1v. if the en pin is not connected, the chip is enabled. this en = high condition is assured by the 100k on-chip pull-up resistor. figure 6. linopt pin interface figure 7. en pin interface 75 250 55881 f06 v cc1 100 internal enable signal linopt 55881 f07 v cc1 100k internal enable circuit en www.datasheet.in
LTC5588-1  55881f figure 8. evaluation circuit schematic a pplica t ions i n f or m a t ion evaluation board figure 8 shows the evaluation board schematic. a good ground connection is required for the exposed pad. if this is not done properly, the rf performance will degrade. additionally, the exposed pad provides heat sinking for the part and minimizes the possibility of the chip overheat- ing. resistors r1 and r2 reduce the charging current in capacitors c1 and c2 (see figure 8) and will reduce supply ringing during a fast power supply ramp-up with induc- tive wiring connecting v cc and gnd. for en = high, the voltage drop over r1 and r2 is about 0.15v. the supply voltages applied directly to the chip can be monitored by measuring at the test points tp1 and tp2. if a power supply is used that ramps up slower than 7v/s and limits the overshoot on the supply below 3.8v, r1 and r2 can be omitted. to facilitate turn-on and turn-off time measure- ments, the microstrip between j5 and j7 can be used connecting j5 to a pulse generator, j7 to an oscilloscope with 50 input impedance, removing r5 and inserting a 0 resistor for r3. j2 lom 24 23 22 21 u1 LTC5588-1 20 19 7 8 9 10 11 12 26 board number: dc1524a gnd 25 6 5 4 3 2 1 c5 1nf r5 0 unbp gnd bp nc 6 5 4 1 2 3 gnd balun bp 13 14 15 16 c7 6.8pf c8 0.2pf j6 rf out j1 lop j5 en j7 en j9 bbmi j8 bbpi en tp1 u2 opt 17 18 en gnd lop lom gnd nc v cc2 gndrf rf nc gndrf nc v cc1 gnd bbmi bbpi gnd gndrf linopt gnd bbmq bbpq gnd gndrf c13 100nf c6 1nf c4 1nf r2 1.3 v cc r1 1 r11 opt r14 1 linopt r3 opt r4 opt r12 opt c14 1nf r13 opt c2 4.7f tp2 c3 1nf c12 opt c11 opt c1 4.7f r6 opt r10 opt r8 opt c9 opt c10 opt r9 opt r7 opt j3 bbmq j4 bbpq 55881 f08 www.datasheet.in
LTC5588-1  55881f a pplica t ions i n f or m a t ion figure 9. component side of evaluation board figure 10. bottom side of evaluation board figures 9 and 10 show the component side and the bot- tom side of the evaluation board. an enlarged view of the component side around the ic placement shows all pins related to gnd (group 1) and all pins related to gndrf (group 2) are not connected via the top layer of the com- ponent side in figure 11. it is possible to use the part without a split-paddle pcb island, but this may degrade oip2 by a few db at some frequencies and reduce lo leakage slightly. due to self heating, the board temperature on the bottom side underneath the exposed die paddle for en = high and v cc = 3.3v is C29.5c at C40c, 37.8c at 25c and 98.1c at 85c ambient temperatures. the on-chip temperature can be obtained using the 1.1k at 25c on-chip resistor with a temperature coefficient of 9/c between group 1 and ground, requiring ac ground- ing pins 12, 14, 17, 19 and exposed pad 26 (group 2). figure 11. enlarged view of the component side of the evaluation board www.datasheet.in
LTC5588-1  55881f a pplica t ions i n f or m a t ion the LTC5588-1 is recommended for basestation applica- tions using various modulation formats. figure 14 shows a typical application. the ltc2630 can be used to drive the linopt pin via a spi interface. at 3.3v supply, the maximum linopt voltage is about 3.125v. using an extra buffer like the ltc6246 in unity-gain configuration can increase the maximum linopt voltage to about 3.17v. an ltc2630 with a 5v supply can drive the full 2v to 3.7v range for the linopt pin. figure 12 shows the acpr, altcpr and acpr, altcpr with optimized linopt voltage vs rf output power at 2.14ghz for w-cdma 1, 2 and 4 carriers. a 4-carriers w-cdma spectrum is shown in figure 13 with and without linopt voltage optimization. figure 12. acpr, altcpr and acpr, altcpr with optimized linopt voltage vs rf output power at 2.14ghz for w-cdma 1, 2 and 4 carriers rf frequency (ghz) power in 30khz bw (dbm) ?60 ?40 ?20 55881 f13 ?80 ?100 ?120 2.115 2.125 2.145 2.155 2.135 2.165 optimized not optimized f bb = 140mhz f lo = 2280mhz downlink test model 64 dpch figure 13. 4-carrier w-cdma spectrum with and without linopt voltage optimization rf output power per carrier (dbm) ?20 acpr, altcpr (dbc) ?60 ?50 ?40 4c 2c 1c 0 55881 ta01b ?70 ?80 ?90 ?15 ?10 ?5 5 acpr acpr (opt) altcpr altcpr (opt) downlink test model 64 dpch f bb = 140mhz, f lo = 2280mhz www.datasheet.in
LTC5588-1  55881f information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no representa- tion that the interconnection of its circuits as described herein will not infringe on existing patent rights. p ackage descrip t ion pf package variation: pf24ma 24-lead plastic utqfn (4mm 4mm) (reference ltc dwg # 05-08-1834 rev ?) 4.00 p 0.10 2.50 ref 4.00 p 0.10 note: 1. drawing is not a jedec package outline 2. drawing not to scale 3. all dimensions are in millimeters 4. dimensions of exposed pad on bottom of package do not include mold flash. mold flash, if present, shall not exceed 0.15mm on any side, if present 5. exposed pad shall be solder plated 6. shaded area is only a reference for pin 1 location on the top and bottom of package pin 1 top mark (note 6) 0.40 p 0.10 2423 1 2 bottom view?exposed pad 1.24 p 0.10 0.41 p 0.10 2.45 p0.10 0.55 p 0.05 r = 0.05 typ r = 0.125 typ 0.25 p 0.05 0.50 bsc 0.125 ref 0.00 ? 0.05 (pf24ma) utqfn 0908 rev ? recommended solder pad pitch and dimensions apply solder mask to areas that are not soldered 0.70 p0.05 0.41 p0.05 0.41 p0.05 0.25 p0.05 1.24 p0.05 0.50 bsc 2.45 p 0.05 3.10 p 0.05 4.50 p 0.05 package outline pin 1 notch r = 0.20 typ or 0.25 s 45o chamfer 0.41 p 0.10 0.41 p 0.10 2.50 ref 0.41 p0.05 www.datasheet.in
LTC5588-1  55881f linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 fax : (408) 434-0507 www.linear.com ? linear technology corporation 2010 lt 0810 ? printed in usa r ela t e d p ar t s typical a pplica t ion part number description comments infrastructure lt ? 5518 1.5ghz to 2.4ghz high linearity direct quadrature modulator 22.8dbm oip3 at 2ghz, C158.2dbm/hz noise floor, 3k 2.1v dc baseband interface, 5v/128ma supply lt5528 1.5ghz to 2.4ghz high linearity direct quadrature modulator 21.8dbm oip3 at 2ghz, C159.3dbm/hz noise floor, 50 0.5v dc baseband interface, 5v/128ma supply lt5558 600mhz to 1100mhz high linearity direct quadrature modulator 22.4dbm oip3 at 900mhz, C158dbm/hz noise floor, 3k 2.1v dc baseband interface, 5v/108ma supply lt5568 700mhz to 1050mhz high linearity direct quadrature modulator 22.9dbm oip3 at 850mhz, C160.3dbm/hz noise floor, 50 0.5v dc baseband interface, 5v/117ma supply lt5571 620mhz to 1100mhz high linearity direct quadrature modulator 21.7dbm oip3 at 900mhz, C159dbm/hz noise floor, hi-z 0.5v dc baseband interface, 5v/97ma supply lt5572 1.5ghz to 2.5ghz high linearity direct quadrature modulator 21.6dbm oip3 at 2ghz, C158.6dbm/hz noise floor, hi-z 0.5v dc baseband interface, 5v/120ma supply ltc5598 5mhz to 1600mhz high linearity direct quadrature modulator 27.7dbm oip3 at 140mhz, C160dbm/hz noise floor with p out = 5dbm ltc5540/ltc5541/ ltc5542/ltc5543 600mhz to 4ghz high linearity downconverting mixers iip3 = 26.4dbm, 8db conversion gain, <10db nf, 3.3v/190ma supply current lt5527 400mhz to 3.7ghz, 5v downconverting mixer 2.3db gain, 23.5dbm iip3, 12.5db nf at 1900mhz, 5v/78ma supply current lt5557 400mhz to 3.7ghz, 3.3v downconverting mixer 2.9db gain, 24.7dbm iip3, 11.7db nf at 1950mhz, 3.3v/82ma supply current rf power detector lt5581 6ghz low power rms detector 40db dynamic range, 1db accuracy over temperature, 1.5ma supply current ltc5582 40mhz to 10ghz rms power detector 57db dynamic range, 1db accuracy over temperature, single-ended rf input (no transformer) figure 14. 200mhz to 6000mhz direct conversion transmitter application 90o 0o LTC5588-1 v cc 1nf 50 1nf 6.8pf 3.3v 0.2pf baseband generator rf = 200mhz to 6000mhz 1nf + 4.7f s2 en 21 22 10 9 3 4 7 5 6 4 ld sck sdi 1 12,14,17, 19, 26 2, 5, 8, 11, 20 23, 25 1 i-channel q-channel 55881 f14 i-dac q-dac vco/synthesizer pa linopt 3.3v dac ltc2630 24 18 2 3 vmi vmi www.datasheet.in


▲Up To Search▲   

 
Price & Availability of LTC5588-1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X